This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

New Aliphatic Tellurenyl and Tellurinyl Compounds

Martin Feikus^a; Peter H. Laur^a

^a Institute of Inorganic Chemistry, RWTH Aachen University of Technology, Aachen, Germany

To cite this Article Feikus, Martin and Laur, Peter H.(1992) 'New Aliphatic Tellurenyl and Tellurinyl Compounds', Phosphorus, Sulfur, and Silicon and the Related Elements, 67: 1, 73 - 78

To link to this Article: DOI: 10.1080/10426509208045821 URL: http://dx.doi.org/10.1080/10426509208045821

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NEW ALIPHATIC TELLURENYL AND TELLURINYL COMPOUNDS

MARTIN FEIKUS AND PETER H. LAUR

Institute of Inorganic Chemistry, RWTH Aachen University of Technology, D-5100 Aachen, Germany

Continuing earlier work on organyl tellurium halides¹, alkyl tellurium trihalides RTeHal₃ (Hal = Cl, Br, I) and salts incorporating the alkanetetrahalotellurinate anions $A^{\dagger}RTeHal_4$ ($A^{\dagger}=py^{\dagger}$, NR'_4 ; Hal = Cl, Br, I) have been synthesized. The equimolar reaction of R_2Te_2 with elemental halogen yielded the aliphatic tellurenyl halides RTeHal (Hal = Cl, Br, I), that were also accessible by the comproportionation of R₂Te₂ and RTeHal₃. The tellurenyl compounds were trapped chemically and characterized spectroscopically. Hydrolysis of the trihalides afforded various tellurinyl derivatives, depending on the reaction conditions: RTe(O)Hal (Hal = Cl, Br), RTeO₂, or (RTeO)₂O. Constitutions and equilibria were studied by NMR, UV, CD, MCD, and IR.

Aliphatic Tellurium Dihalides RR'TeHal2, Trihalides RTeHal3, and Tetrahalotellurinates RTeHal4

In order to investigate the reactions and the spectroscopic properties of the incompletely studied aliphatic tellurium di- and trihalides, we had at first to synthesize and to characterize suitable compounds. The reaction of n-dialky! ditellurides (some of them new) with an excess of the free halogens Cl_2 , Br_2 , or I_2 , respectively, provided the necessary n-alkyl tellurium trihalides. The incorporation of longer chains like octyl, decyl, or dodecyl improved the solubility of the products and facilitated thereby their full characterization, at the same time eliminating odor problems. Bromination with pyridinium tribromide continued to the pyridinium alkanetetrahalotellurinate stage, thus providing a new class of compounds. Another straightforward route to these anions was found in the reaction of RTeHal3 with ionic halides.

```
R_2Te_2 + 3 Hal_2 - 2 RTeHal_3
R_2Te_2 + 3 py^+Br_3^- \longrightarrow 2 py^+RTeBr_4^- + py^+Br_4^-
RTeHal<sub>3</sub> + A'Hal - A'RTeHal<sub>4</sub>
```

(Hal - Cl, Br, I, A^+ - py^+ , tetraalkylammonium, R - n-alkyl)

The chloro and the bromo compounds are usually stable, but with RTeI3 and RTel₄ the decomposition of a solution thereof is apparent already after storage at room temperature for a few hours, leading to alkyl iodides and inorganic matter and also to minor quantities of R_2 TeI₂.

Dialkyl tellurium dihalides were synthesized by the reaction of aliphatic monotellurides with the elemental halogens; the compounds RR'TeHal₂ are liquids or low melting solids, the stability of which depends markedly on the alkyl group and on the halogen:

Aliphatic Tellurenyl Halides RTeHal

The reaction of $R_2 Te_2$ with Hal_2 in the molar ratio 1:1 led to the formation of the not previously reported aliphatic tellurenyl halides RTeHal. Although no crystalline samples could be obtained so far, and despite thermal decomposition to $R_2 TeHal_2$ and tellurium, the stabilities are high enough in all cases to enable carrying out spectroscopic investigations and chemical reactions; whereas the iodides RTeI decompose within minutes at room temperature, the chlorides RTeCl are stable for weeks. Even more convenient is the preparation of the alkanetellurenyl halides by the comproportionation reaction of dialkyl ditellurides with alkyl tellurium trihalides leading to an equilibrium that lies far on the side of the tellurenyl moiety: Just mixing of the solutions of the components is all that is needed.

$$R_2Te_2$$
 + Hal_2 --- 2 RTeHal --- Te + R_2TeHal_2
 R_2Te_2 + RTeHal $_3$ --- 3 RTeHal
stabilities: RTeCl > RTeBr > RTel (Hal - Cl, Br, I, R - n -alkyl)

The tellurenyl halides can be trapped in excellent yield by alkyl lithiums, thus providing a new access to unsymmetrical aliphatic tellurides, e.g.,:

$$n$$
-alkyl Te Hal + t -C₄H₉Li $\frac{t}{0}$ $\frac{t}{0}$ Te + LiHal (Hal - Cl, Br, I)

Detailed investigations of the comproportionation reaction by UV/VIS techniques have not indicated the formation of any complexes or compounds of different stoichiometry but RTeHal, despite a large excess of either RTeHal₃ or R_2Te_2 in the reaction mixture, wheras NMR-spectra show a rapid exchange that broadens or renders undetectable the α -, the β -, and even the γ -carbon atoms of the 3 components in equilibrium at room temperature. Employing low temperatures and high mag-

netic fields (e.g., -90 °C in CD_2Cl_2 on a 500 MHz NMR instrument), the ^{13}C NMR spectra of the pure tellurenyl halides indicate that still another exchange process is involved, since eventually two sets of carbon resonances in a 1:1 ratio are obtained, differing by some 20 ppm for δ (C- α). Similarly, the tellurium resonance splits into two signals at low temperatures. The origin of this event is still uncertain.

TABLE I Physical data for representative aliphatic tellurium halides.

			δ ¹²⁵ Te	Δ 1/2	δ ¹³ C •	¹J(Te-CH ₂)	δ ¹³ C +	δ¹H#
compound	mp./℃	color	ppm	Hz	ppm	Hz	ppm	ppm
(n-C ₈ H ₁₇) ₂ TeCl ₂	$n-C_8H_{17})_2TeCl_2 \sim -10 \text{ col}$		875ª	10	46.5 ^a	163	25.1	3.48 a
$(n-C_{1O}H_{21})_2$ TeCl ₂	~-10	colorless	873ª	10	46.6 ^a	165	25.2	3.44 a
$(n-C_{12}H_{25})_2$ Te Cl_2	∼ -5	colorless	883ª	10	46.6 a		25.2	3.44 ^a
$r-C_4H_9$ $TeBr_2$	×	yellow	1105 f	10	46.3 f	148(?)	26.0	
n-C ₁₂ H ₂₅ TeBr ₂	×	yellow	1108 f	10	46.6 f		26.0	
$(n-C_6H_{17})_2$ Te Br_2	~ -15	colorless	818ª	10	44.8 a	156	25.5	3.56 a
$(n-C_{1O}H_{21})_2$ TeBr ₂	~ -10	colorless	817ª	10	44.8 ^a	153	25.5	3.59 ^a
$(n-C_{12}H_{25})_2$ TeBr $_2$	~ -10	brownish	812ª	10	45.3 ^a	154	25.7	3.58 ^a
(n-C ₈ H ₁₇) ₂ Tel ₂	~ -20	red	724 ^b	10	42.0 a	126	26.3	3,56 a
$(n-C_{1O}H_{21})_2$ TeI $_2$	~ -20	red	728ª	10	42.0 a	126	26.3	3.59 a
$(n-C_{12}H_{25})_2Tel_2$	30	red	720 ^b	10	41.6 ^b	124	26.5	3.55 a
n-C ₈ H ₁₇ TeCl ₃	57	white	1552 ^a	20	60.5 a	213	25.2	3.99 ª
$n\text{-}C_{1O}H_{21}TeCl_3$	43	white	155 7ª	20	60.8 a	205	25.2	3.95 a
n-C ₁₂ H ₂₅ TeCl ₃	48-49	white	1558ª	20	60.9 ^a	206	25.2	3.99 a
n-C ₈ H ₁₇ TeBr ₃	57	yellow	1463ª	30	56.9 a		27.2	4.08 a
n-C _{1O} H ₂₁ TeBr ₃	57	yellow	1468ª	30	56.7 a	185	27.3	4.08 ^a
n-C ₁₂ H ₂₅ TeBr ₃	58	yellow	1467ª	30	56.8 ^a	183	27.3	4.09 a
n-C ₈ H ₁₇ Tel ₃	91	violet, red in sol.	1284 ^b	150	46.6 b	148(?)	30.9	3.90 a
n-C _{1O} H ₂₁ TeI ₃	88	violet, red in sol.	1284 ^b	150				
n-C ₁₂ H ₂₅ Tel ₃	1-1		1285b	150	46.5 ^b		30.9	3.89 a
$py^+n-C_6H_{17}TeCl_4$	148	white	1321°	60	66.7 °	183	26.4	3.68 ℃
$py^+n-C_8H_{17}TeBr_4^-$	>300	yellow	1229d	50	61.8 e	165	27.9	3.88 d
py*n-C _{IO} H ₂₁ Tel ₄	>300	green, red in soi.	963°	80	51.2°	118	30.5	3.73 d
(a) $CDCl_{3}$; (b) $C_{6}D_{6}$; (c) $CD_{3}CN_{1}$; (d) $(CD_{3})_{2}CO_{1}$; (e) $CD_{3}OD_{1}$; (f) $CD_{2}Cl_{2}$; -20 °C								-20 ℃

⁽a) $CDCl_{3}$; (b) $C_{6}D_{6}$; (c) $CD_{3}CN_{1}$ (d) $(CD_{3})_{2}CO_{1}$ (e) $CD_{3}OD_{1}$ (f) $CD_{2}Cl_{2}$, -20 $^{\circ}$ $^{\circ}$ α - $_{2}CH_{2}$, $^{+}$ β - $_{2}CH_{2}$, $^{+}$ α - $_{2}CH_{2}$, $^{-}$ $^{\circ}$ $^{\circ}$

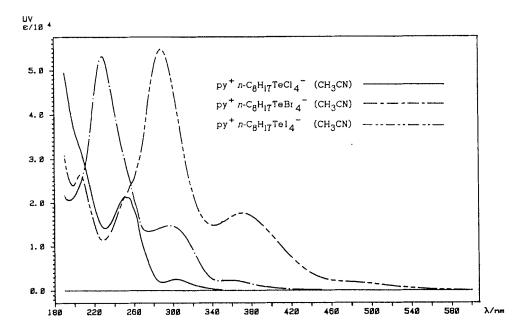


FIGURE 1 UV-spectra of pyridinium n-octanetetrahalotellurinates.

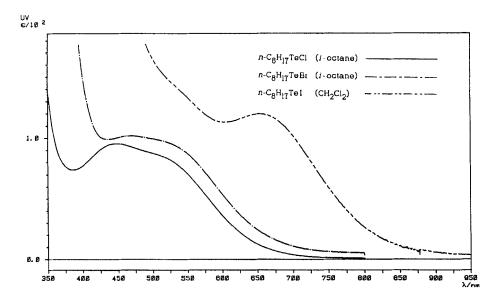


FIGURE 2 UV-spectra of n-octanetellurenyl halides.

TABLE II	UV	characteristics	of	some	n-decyl	tellurium	compounds.
----------	----	-----------------	----	------	---------	-----------	------------

compound	solvent	λmax (ε)	color
(л-C _{1O} H ₂₁) ₂ Te ₂	i-octane	258 sh (3150), 299 sh (393), 394 (615)	orange
n-C _{1O} H ₂₁ TeCl ₃	i-octane	207 (23600), 244 sh (8830), 298 (1650)	white
n-C _{lO} H _{2l} TeCl	i-octane	204 (16800), 231 sh (6490), 297 sh (1030) 450 (96), 516 sh (87)	cherry red
n-C _{IO} H _{2I} TeBr ₃	i-octane	232 (38300), 280 sh (10600), 358 sh (1690)	yellow
<i>п</i> -С ₁₀ Н ₂₁ ТеВг	i-octane	300 sh (3000), 470 (102), 520 sh (98)	violet
n-C _{lO} H _{2l} Tel ₃	CH ₂ Cl ₂	281 (22300), 338 (12100), 460 sh (2210)	red
n-C _{1O} H ₂₁ TeI	CH ₂ Cl ₂	263 (4340), 286 (4080), 322 sh (2980) 531 sh (144), 653 (120)	green

TABLE III NMR characteristics of n-octanetellurenyl chloride/bromide.

compound	T/°C	solvent	δ ¹³ C-N	NMR/ppm	(TMS)	$\delta^{1}H$ -NMR/ppm (TMS)		
			α-CH ₂	β-CH ₂	Y-CH ₂	α-CH ₂	β-CH ₂	
n-C ₈ H ₁₇ TeCl	-90	CD ₂ Cl ₂	44.4 19.2	29.3 33.7	30.8 32.0	3.7 3.8	2.0	
n-C ₈ H ₁₇ TeCl	0	CDCl ₃	-	31.5*	31.5**			
n-C ₈ H _{I7} TeCl	25	CD ₂ Cl ₂				3.81	2.12	
n-C ₈ H ₁₇ TeBr	-90	CD ₂ Cl ₂	43.3 21.8	29.7 33.5	31.2 32.4	3.7 3.8	2.0	
<i>n</i> -C ₈ H ₁₇ TeB ₁	25	$C_{\bullet}D_{\bullet}$	-	32 ⁺	31.7**			
n-C ₈ H ₁₇ TeBr	25	CDCl ₃				3.79	2.06	
*∆ 1/2 - 70 Hz		** ∆ 1/2 - 25 Hz		⁺ Δ 1/	/2 - 20 H:	z ^{**} Δ 1/2 - 5 Hz		

Aliphatic Tellurenyl Halides RTe(O)Hal, Tellurinates RTeO₂, and Tellurinic Acid Anhydrides (RTeO)₂O

By careful hydrolysis of alkyl tellurium trichlorides and tribromides, white powders with the composition of alkanetellurinyl halides RTe(O)Hal are obtained. The IR spectra are characterized by distinct absorption features in the 500 - 800 cm⁻¹ region that change on prolonged boiling in alcohols. Further hydrolysis in aqueous alkaline media produces alkanetellurinate anions that deposit on acidification the poorly soluble anhydrides of the corresponding tellurinic acids. The structural investigation of these compounds is still in progress.

Characterization of the Compounds

All compounds were prepared in good yields and gave correct elemental analyses (exception: RTeHal have not been analyzed). NMR, UV, and IR were used to elucidate the complex reactions and equilibria. In particular, ¹²⁵Te NMR is most useful for the characterization of the compounds, as chemical shifts, line widths and coupling constants vary in a typical manner with the substrates and their functionalities.

Most of the compounds show characteristic colors. Selected physical properties and spectral data of representative new organyl tellurium halides RR'TeHal₂, RTeHal₃, and RTeHal are collected in the Tables.

REFERENCES

 D. Bendix, P. Laur, and I. K. Nielsen, Abstr. 4th Int. Conf. Org. Chem. Se and Te, Birmingham (GB) (1983); D. Bendix, Doctoral Dissertation, RWTH Aachen (1981)